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Abstract

We exploit the distributional information contained in high-frequency intraday data in con-
structing a simple conditional moment estimator for stochastic volatility di#usions. The esti-
mator is based on the analytical solutions of the 4rst two conditional moments for the latent
integrated volatility, the realization of which is e#ectively approximated by the sum of the
squared high-frequency increments of the process. Our simulation evidence indicates that the
resulting GMM estimator is highly reliable and accurate. Our empirical implementation based
on high-frequency 4ve-minute foreign exchange returns suggests the presence of multiple latent
stochastic volatility factors and possible jumps. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Continuous-time stochastic volatility models have 4gured very prominently in the
recent econometrics and empirical 4nance literature (see e.g., Ghysels et al., 1996).
Aside from a few special cases, the estimation of such models are complicated by
two distinct challenges. First, since the volatility is latent, any estimation method must
either adopt an imperfect proxy for the unobserved volatility, typically involving the
inversion of a speci4c asset pricing formula, or alternatively integrate out this latent
variable from the model. Second, even if the volatility process was directly observable
at discrete points in time, closed form expressions for the corresponding transition

∗ Corresponding author.
E-mail address: hao.zhou@frb.gov (H. Zhou).

0304-4076/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S 0304 -4076(01)00141 -5



34 T. Bollerslev, H. Zhou / Journal of Econometrics 109 (2002) 33–65

density functions are generally not available for the continuous time models commonly
employed in the literature. Using high-frequency data, this paper tries to meet both of
these challenges by making the latent volatility e#ectively observable at discrete points
in time through its representation in quadratic variation form, in turn relying on simple
moment conditions of this measure that involve the underlying structural parameters
for estimation purposes.
Our work complements numerous estimation strategies that have been proposed in

the literature for dealing with the above mentioned two complications, either separately
or jointly. Important contributions include the quasi-maximum likelihood (QML) es-
timator for the discrete-time stochastic volatility model in Ruiz (1994) and Harvey
and Shephard (1994); the Markov Chain Monte Carlo (MCMC) methods advanced by
Jacquier et al. (1994), Eraker (2001), and Kim et al. (1998); the simulated methods
of moments approach in DuJe and Singleton (1993); the indirect inference proce-
dure of Gourieroux et al. (1993); the eJcient methods of moments (EMM) developed
by Gallant and Tauchen (1996) and Gallant and Long (1997); the in4nitesimal mo-
ment generator underlying the GMM procedure in Hansen and Scheinkman (1995) and
Conley et al. (1997); the approximation method to the likelihood function building on
the Kolmogorov forward equations in Lo (1988) and AKLt-Sahalia (2001); and the spec-
tral GMM estimator utilizing the empirical characteristic function in Chacko and Viceira
(1999), Jiang and Knight (2001), and Singleton (2001). While all of these procedures
yield consistent, and in many cases also asymptotically eJcient, parameter estimates
for the various model speci4cations, they are all computationally demanding and cum-
bersome to implement in practice. In the present paper we propose a new, much easier
to compute, estimation procedure for stochastic volatility di#usions outside the realm
of any speci4c asset pricing framework. The basic idea is straight forward. Instead of
integrating out the latent volatility, the strategy proposed here utilizes high-frequency
data for explicitly measuring the realized volatility. 1

High-frequency, or tick-by-tick, data have recently become available for a host of
di#erent 4nancial instruments and markets. 2 Following the work of Merton (1980)
and Nelson (1992), such high-frequency data could in principle be used to con-
struct point-wise consistent 4ltering measurements for the instantaneous volatility. How-
ever, the optimal 4lter weights depend in complicated ways on the particular model
structure. More importantly, in practice the continuous record asymptotics underlying
the theoretical arguments are corrupted by inherent discreteness, time-of-day e#ects,

1 Alternatively, within the context of a speci4c asset pricing framework using options data and=or term
structure variables, it may be possible to solve for the point-in-time implied volatilities based on the inversion
of the pricing formula; see e.g., Dai and Singleton (2000), DuJe et al. (2000), and Pan (2001) for a thorough
analysis of aJne stochastic volatility models.

2 An incomplete list of these includes quote-by-quote foreign exchange rates for all of the major currencies
provided by Olsen & Associates; trade and quote data for almost all exchanges listed US equities as provided
by the TAQ database; tick prices for the derivatives contracts on the Chicago Mercantile Exchange (CME)
and the Chicago Board of Trade (CBOT); complete order books for the Paris Bourse and all Australian
equities; prices and best quotes from the Deutsche Termine-Borse (DTB) and the London International
Financial Futures and Options Exchange (LIFFE) (see also the discussion of high-frequency data sources in
Goodhart and O’Hara, 1997).
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bid–ask spreads, and other market microstructure frictions. Meanwhile, by the theory
of quadratic variation, it is possible to construct increasingly more accurate model-free
realized variability, or integrated volatility, measures over a 4xed time interval, say one
day, by simply summing increasingly 4ner sampled squared high-frequency returns
over the relevant time-interval. Importantly, the empirical 4ndings in Andersen and
Bollerslev (1998) suggest that the same market microstructure frictions which plague
the standard continuous record asymptotics, including the strong intraday volatility pat-
terns, do not materially a#ect these interday volatility measures (see also the forecasting
results in Martens, 2001). Motivated by these results, Andersen et al. (2001a, b) o#er
a detailed characterization of the salient distributional features of daily realized for-
eign exchange and individual stock return volatilities constructed from high-frequency
data.
Here, we go one step further, and show that by matching the sample moments

of the realized volatility to the population moments of the integrated volatility im-
plied by a particular continuous-time model structure, a standard, and easy-to-compute,
GMM-type estimator for the underlying model parameters is immediately applicable.
For illustrative purposes we restrict the initial analysis in the paper to the single-factor
square-root, or aJne, class of stochastic volatility models. However, we subsequently
suggest generalizations to incorporate jumps, asymmetries or leverage e#ects, as well
as multiple volatility factors. This set of models arguably constitute the leading cases
in the literature, but the method is general and could be extended to many other con-
tinuous time models, including the constant elasticity of variance, or SR-SARV, class
of models analyzed by Meddahi and Renault (2000), and the non-Gaussian LOevy based
Ornstein–Uhlenbeck processes in Barndor#-Nielsen and Shephard (2001b). 3

The rest of the paper is organized as follows. The next section demonstrates how the
population moments of the integrated volatility for the baseline one-factor square-root
model may be derived from the moments for the point-in-time volatility. This section
also briePy discusses the basic GMM setup employed in the estimation. The Monte
Carlo simulations in Section 3 show that the method works very well in empirically
realistic 4nite sample settings, the only caveat being the inclusion of an additive ad-
justment term to account for the measurement error in the squared realized volatility
constructed from the high-frequency “4ve-minute” returns. Moreover, the eJciency of
the parameter estimates compares favorably to that of a non-feasible QML procedure
explicitly treating the “daily” instantaneous volatility as observable. Section 4 details
the empirical results from applying the new estimation procedure to a data set of
high-frequency 4ve-minute foreign exchange rates spanning an entire decade. Consis-
tent with other recent 4ndings in the literature, the results suggest the presence of
multiple latent volatility factors and=or jumps. Section 5 concludes. Mathematical de-
tails regarding the derivation of the various moment conditions are relegated to two
technical appendices.

3 In concurrent work, Barndor#-Nielsen and Shephard (2001a) have recently proposed a QML estimator
for the LOevy driven OU processes based on Kalman 4ltering and a state space representation of the latent
integrated volatility.
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2. Estimating stochastic volatility di�usion

The basic estimation strategy builds on the conventional asymptotic theory of GMM
assuming an increasing number of discretely sampled observations (Hansen, 1982).
However, the construction of the sample moments explicitly relies on the availability
of high-frequency data, and the corresponding almost sure convergence of the quadratic
variation. We begin with a general discussion of the main idea, followed by a detailed
discussion of the popular one-factor square-root, or aJne, class of stochastic volatility
models. Generalizations of this model to include jumps, leverage e#ects, or asymme-
tries, and multiple latent volatility factors are considered in the technical appendix.

2.1. Integrated volatility and GMM estimation

To set out the main idea, let pt denote the time t logarithmic price for some asset.
The generic continuous time stochastic volatility model may then be written as

dpt = �(pt; Vt ; t; �) dt + �(pt; Vt ; t; �) dBt;

dVt = 
(pt; Vt ; t; �) dt + �(pt; Vt ; t; �) dWt; (1)

where Vt denotes a vector of latent volatility factors, dBt and dWt denote compatible,
possibly correlated, Brownian motions, and the drift and di#usions functions are as-
sumed to be suJciently regular to guarantee the existence of a unique strong solution
(see, e.g., Karatzas and Shreve, 1997). The parameters, �, are restricted to lie within
some compact set, , containing the true parameters of the process, say �0. Of course,
the dependence of pt on dWt through both Vt and corr(dBt; dWt) may be redundant.
Also, for concreteness, in the subsequent empirical analysis we will normalize the unit
time interval to correspond to one day.
In order to focus the analysis, we shall 4x the drift in the log price process at

zero, concentrating exclusively on the estimation of the time-varying volatility of the
process, i.e., �(pt; Vt ; t; �) = 0. This is consistent with existing empirical evidence,
which indicates very little predictable variation in the mean of high-frequency asset
returns (e.g., Andersen and Bollerslev, 1997). Moreover, unless the full model exhibits
direct feedback e#ects from the log price process pt to the volatility process Vt , leverage
e#ects or asymmetries, and=or jump components, the exact form of the drift function is
generally irrelevant for the consistent estimation of the parameters entering the di#usion
functions.
Meanwhile, the estimation of the volatility parameters based on discretely sample

observations for the pt process is complicated by the Vt process being latent, and
the lack of a closed form expression for the corresponding transition density function.
However, by the theory of quadratic variation,

lim
N→∞

2N∑
i=1

[pt+i=2N (T−t) − pt+(i−1)=2N (T−t)]
2 a:s:−→

∫ T

t
�2(ps; Vs; s; �) ds ≡ Vt; T ; (2)

where Vt;T denotes the integrated volatility from time t to T . Thus, while the point-in-
time volatility, �(pt; Vt ; t; �), is generally unobservable, by summing increasingly 4ner
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sampled squared high-frequency returns, it is possible to obtain increasingly more ac-
curate estimates of the integrated volatility of the process. Importantly, in the limit the
integrated volatility becomes e#ectively observable.
Explicitly treating the integrated volatility as observable, in turn permits the imple-

mentation of a standard GMM-type estimator for the underlying model parameters, by
minimizing the weighted distance between the sample moments and the corresponding
population moments of Vt;T implied by the particular model structure. Of course, as
discussed further below in practice continuously sampled observations are not available,
so that the integrated volatility is not truly observable. Still, the same GMM estimation
strategy may be formally justi4ed under the additional assumption that the number of
observations employed in the construction of the sample moments converges to in4n-
ity at a slower rate than the almost sure convergence rate of 1=2N for the quadratic
variation. The operative of this assumption is obviously a practical empirical question.
For illustrative purposes, we restrict the discussion in the following section to the

simple one-factor square-root model. However, the same basic approach could in
principle be applied in the estimation of any stochastic volatility model for which
the conditional mean and conditional variance of the point-in-time volatility have
tractable analytical expressions. 4 This latter class is quite general, including the aJne
jump-di#usion class of models popularized by DuJe and Kan (1996), DuJe et al.
(2000), and Dai and Singleton (2000), the constant elasticity of variance class of mod-
els studied by Meddahi and Renault (2000), as well as the quadratic stochastic volatility
class of models (see, e.g., Kloeden and Platen, 1992).

2.2. Solutions for the baseline stochastic volatility model

The square-root volatility model, or scalar aJne di#usion, is succinctly de4ned by

dpt =
√
Vt dBt;

dVt = 
(�− Vt) dt + �
√
Vt dWt; (3)

where Vt is a scalar latent volatility process. 5 This model was popularized by Heston
(1993), and it has been widely used in the empirical 4nance literature. While the
4rst-order parameterization is obviously somewhat restrictive, it is nonetheless rich
enough to illustrate the general idea. In this parameterization, � determines the long-run
(unconditional) mean of the volatility, 
 corresponds to the mean reversion parameter,
while � denotes the local variance (volatility-of-volatility) parameter. For the process
to be well de4ned, the parameters must satisfy standard restrictions (see e.g., Feller
(1951) for details): �¿ 0 (non-negativity), 
¿ 0 (stationary in mean), and �26 2
�
(stationary in volatility).

4 Although the procedure implemented here hinges on analytical expressions for the population moments
of Vt;T , these could alternatively be evaluated by simulations, and the underlying parameters estimated by
simulated methods of moments (DuJe and Singleton, 1993).

5 The drift of the log price process is 4xed at zero for simplicity. However, a non-trivial drift function,
say �t dt, could be included in the 4rst equation without impeding the estimation of the three volatility
parameters.
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In deriving the conditional moments for the integrated volatility, it is useful to dis-
tinguish between two information sets—the continuous sigma-algebra Ft=�{Vs; s6 t},
generated by the point-in-time volatility process, and the discrete sigma-algebra
Gt = �{Vt−s−1; t−s; s= 0; 1; 2; : : : ;∞}, generated by the integrated volatility series. Ob-
viously, the coarser 4ltration is nested in the 4ner 4ltration (i.e., Gt ⊂ Ft), and by the
Law of Iterated Expectations, E[E(·|Ft)|Gt] = E(·|Gt).
We begin with a detailed discussion of the logic behind the derivation of the op-

erational moment conditions for the conditional mean of the integrated volatility. The
derivation of the second moment proceeds in a similar fashion, but it is more involved
and the technical details are referred to Appendix A.

2.2.1. Conditional mean
In deriving the conditional mean for the integrated volatility, it is useful to start with

the conditional mean of the point-in-time volatility. In particular, it follows from the
results in Cox et al. (1985) that

E(VT |Ft) = �T−tVt + �T−t ; (4)

where �T−t = e−
(T−t) and �T−t = �(1 − e−
(T−t)) are functions of the structural
parameters and the horizon of the forecast, T − t. Now, expressing the conditional
mean of the integrated volatility as a (linear) function of the point-in-time volatility
and interchanging the integration operators, it follows that

E(Vt;T |Ft) = E
(∫ T

t
Vs ds

∣∣∣∣Ft

)
= aT−tVt + bT−t ; (5)

where aT−t = 1=
(1 − e−
(T−t)) and bT−t = �(T − t) − (�=
)(1 − e−
(T−t)) denote
explicit functions of the drift parameters and the sampling interval (see Appendix A
for details).
Focusing on the one-day horizon (we omit the subscript, i.e., a ≡ a1; b ≡ b1; � ≡ �1

and � ≡ �1), repeated use of Eqs. (4) and (5) then yields

E[E(Vt+1; t+2|Ft+1)|Ft] = aE(Vt+1|Ft) + b

= a(�Vt + �) + b

= �[E(Vt; t+1|Ft)− b] + a� + b;

which simpli4es as

E(Vt+1; t+2|Ft) = �E(Vt; t+1|Ft) + �:

This latter equation only involves the moments of the integrated volatility, and by the
Law of Iterated Expectation, it may be conditioned on the coarser information set Gt ,
yielding

E[E(Vt+1; t+2|Ft)|Gt] = E(Vt+1; t+2|Gt) = �E(Vt; t+1|Gt) + �: (6)

This last equation establishes the required link between the 4rst moment of the inte-
grated volatility and lagged integrated volatility.
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2.2.2. Conditional second moment
Analogous to the derivation of the conditional 4rst moment above, it is convenient

to start from the expression for the conditional variance for the point-in-time volatility.
Again, following Cox et al. (1985), we have

E(V 2
T |Ft) = Var(VT |Ft) + [E(VT |Ft)]2

=CT−tVt + DT−t + [�T−tVt + �T−t]2; (7)

where CT−t and DT−t are functionally dependent on the structural parameters and
the sampling interval. Now by expressing the conditional variance of the integrated
volatility as a linear function of the point-in-time volatility and by exploiting Itô’s
Lemma, it is possible to show that

Var(Vt;T |Ft) = AT−tVt + BT−t ; (8)

where AT−t and BT−t represent other functionals of the parameters (see Appendix A
for details).
Combining the conditional variance formula in (8) and the conditional mean formula

in (5), it follows that for the one-day horizon,

E(V2
t; t+1|Ft) = Var(Vt; t+1|Ft) + [E(Vt; t+1|Ft)]2

= a2V 2
t + (2ab+ A)Vt + (b2 + B); (9)

where we have omitted the “daily” subscript “1” on a; b; A and B for notational
convenience. Finally by repeatedly applying the Law of Iterated Expectation on dif-
ferent information sets and substituting expressions between integrated volatility and
point-in-time volatility,

E[E(V2
t+1; t+2|Ft)|Gt] = E(V2

t+1; t+2|Gt)

=H E(V2
t; t+1|Gt) + I E(Vt; t+1|Gt) + J; (10)

where the functions H; I , and J are again de4ned in the Appendix. Corresponding
moment conditions for the squared multi-period integrated volatility may be derived
by similar arguments. 6

2.3. Conditional moment restrictions

The analytical solutions for the conditional 4rst and second moments in Eqs. (6)
and (10), set the stage for the construction of a standard GMM type estimator. Of
course, the eJciency of the resulting estimator de4ned from these conditions will
depend upon the particular choice of instruments (see Hansen (1985); Hansen et al.
(1988) and Gallant and Tauchen (1996) for additional discussion and formal results
along these lines). In the implementation pursued here, we simply augment the two

6 Following the initial draft of the present paper, Lewis (2001) has recently derived a combinatorial
algorithm for numerically calculating all of the higher order moments of the integrated volatility for the
one-factor square-root model.
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basic moments derived above with their own lag-one and lag-one squared counterparts,
resulting in the following six moments:

ft(�) ≡




E[Vt+1; t+2|Gt]−Vt+1; t+2

E[V2
t+1; t+2|Gt]−V2

t+1; t+2

E[Vt+1; t+2Vt−1; t |Gt]−Vt+1; t+2Vt−1; t

E[V2
t+1; t+2Vt−1; t |Gt]−V2

t+1; t+2Vt−1; t

E[Vt+1; t+2V
2
t−1; t |Gt]−Vt+1; t+2V

2
t−1; t

E[V2
t+1; t+2V

2
t−1; t |Gt]−V2

t+1; t+2V
2
t−1; t



: (11)

By construction E[ft(�0)|Gt]= 0, and the corresponding GMM, or minimum chi-square,
estimator is de4ned by �̂T = argmin gT (�)′WgT (�), where gT (�) refers to the
sample mean of the moment conditions, gT (�) ≡ 1=T

∑T−2
t=1 ft(�), and W denotes

the asymptotic covariance matrix of gT (�0) (Hansen, 1982). Under standard regularity
conditions, the minimized value of the objective function multiplied by the sample
size is asymptotically chi-square distributed, which allows for an omnibus test of the
overidentifying restrictions. Moreover, inference concerning the individual parameters
is readily available from the standard formula for the asymptotic covariance matrix,
(@ft(�)=@�′W@ft(�)=@�)=T .
The one-period lag in the moment conditions in Eqs. (6) and (10) implies an MA(1)

error structure. However, in order to avoid any 4nite sample problems with the sample
analogue of W not being positive de4nite, in the simulations and the actual empirical
estimates reported on below, we used a heteroscedasticity and autocorrelation consis-
tent robust covariance matrix estimator with a Bartlett-kernel and a lag length of 4ve
(Newey and West, 1987). 7

Note that in contrast to the GMM-based estimators in Chacko and Viceira (1999),
Jiang and Knight (2001), and Singleton (2001), which rely on discretely sampled, say
daily, data, the moments employed here explicitly depend on high-frequency, intraday,
observations. As documented in the next section, this wider information set, coupled
with the ad hoc moment conditions in Eq. (11), easily translates into more eJcient
4nite-sample parameter estimates when compared to (non-feasible) QML based on
discretely sampled point-in-time volatility observations.

3. Monte Carlo study

The presence of strong temporal dependence and=or conditional heteroscedasticity
have been shown to result in very slow convergence rates and associated poor 4nite
sample performance of asymptotically justi4ed econometric estimation procedures for
continuous-time processes (see, e.g., Pritsker, 1998). This section quali4es the small
sample behavior of the parameter estimates based on the GMM procedure outlined

7 We also experimented with other lag lengths. All of the results were very similar to the ones reported
here, and are available upon request.
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above, along with the corresponding Wald-based inference and omnibus test for general
model misspeci4cation.

3.1. Experimental design

To keep the simulation results manageable, we concentrate on the simple model in
Eq. (3) and the three parameter con4gurations: Scenario A (
=0:03; �=0:25; �=0:10)
features a highly persistent volatility process (near unit-root); Scenario B (
 = 0:10;
� = 0:25; � = 0:10) has a less persistent variance process; Scenario C (
 = 0:10;
�=0:25; �=0:20) has a higher variance-of-variance and is close to the non-stationary
region. In simulating the data, we utilized a 4rst order Euler scheme with 82 arti4-
cial “4ve-minute” intervals per day, further partitioning each 4ve-minute interval into
10 smaller segments for the “continuous-record ”. 8 The quadratic variation formula
(2) is employed to approximate the integrated volatility series. To check the standard
“long-span” asymptotics, we consider the two sample sizes T = 1000 and T = 4000,
corresponding to roughly 4 and 16 years of daily observations, respectively.
Since the true “continuous-time” record is known inside the simulations, we are

able to compare the GMM estimator using the “4ve-minute” quadratic variation with
the corresponding non-feasible estimator using the true integrated volatility. We also
compare the results to a QML estimator based on the “daily” point-in-time volatility
assuming the process to be Gaussian. 9 Although this estimator is not feasible in prac-
tice either, it provides a useful benchmark for assessing the performance of the GMM
procedure and the additional informational content provided by the high-frequency data.
In particular, it follows from the Monte Carlo evidence in Zhou (2001) that in empiri-
cally realistic situations involving highly persistent and=or variable volatility processes,
approximate MLE for the baseline square-root model tend to perform relatively poorly
compared to this much simpler QML procedure. 10 The results for all of the di#erent
models and estimators are summarized in Table 1 and Figs. 1 and 2.

3.2. Parameter estimates and e@ciency

The 4nite sample results indicate that the feasible GMM estimator fairs well (if not
better) than the other two non-feasible alternatives—using “unobserved” point-in-time
volatility or the “continuous time” record integrated volatility. The GMM estimates for
the mean-reversion parameter 
 are only slightly upward biased, while the long-run
mean parameter estimates for � exhibit a small downward bias. At the same time,
the root-mean-squared-errors (RMSEs) for both of the two drift parameters, 
 and �,
decrease roughly at the rate of

√
4 as the sample size goes from 1000 to 4000 “days”.

8 This particular choice was dictated by the fact that most US 4nancial markets are open between
six-and-a-half to seven hours per day, corresponding to 78–84 4ve-minute intervals per day.

9 This estimator is closely related to the procedure in Fisher and Gilles (1996), who propose a QML
estimator for AJne di#usion process, using closed form solutions for the conditional mean and variance.
10 The exact likelihood function has to be numerically approximated, and the quality of this approximation

deteriorates quickly when the parameter is close to the boundary region, i.e., when the process is either very
persistent or highly volatile.
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Table 1
Monte Carlo experiment

True value Mean Median RMSE

T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Panel A
GMM with quadratic variation from high-frequency return

 = 0:03 0.0352 0.0313 0.0340 0.0310 0.0130 0.0054
� = 0:25 0.2430 0.2487 0.2355 0.2460 0.0523 0.0258
� = 0:10 0.1016 0.1030 0.1018 0.1030 0.0080 0.0050

GMM with integrated volatility

 = 0:03 0.0382 0.0323 0.0374 0.0319 0.0139 0.0055
� = 0:25 0.2338 0.2456 0.2273 0.2437 0.0521 0.0257
� = 0:10 0.0992 0.0999 0.0992 0.0998 0.0044 0.0020

QML with point-in-time volatility

 = 0:03 0.0446 0.0360 0.0434 0.0361 0.0195 0.0095
� = 0:25 0.2327 0.2441 0.2271 0.2410 0.0537 0.0290
� = 0:10 0.1012 0.1014 0.0999 0.1011 0.0095 0.0052

Panel B
GMM with quadratic variation from high-frequency return

 = 0:10 0.1057 0.1023 0.1048 0.1016 0.0214 0.0100
� = 0:25 0.2478 0.2491 0.2474 0.2489 0.0158 0.0078
� = 0:10 0.1059 0.1073 0.1061 0.1072 0.0093 0.0082

GMM with integrated volatility

 = 0:10 0.1102 0.1032 0.1090 0.1027 0.0214 0.0091
� = 0:25 0.2460 0.2486 0.2459 0.2483 0.0163 0.0078
� = 0:10 0.0994 0.1000 0.0995 0.0998 0.0042 0.0020

QML with point-in-time volatility

 = 0:10 0.1136 0.1040 0.1134 0.1048 0.0259 0.0138
� = 0:25 0.2497 0.2517 0.2480 0.2510 0.0196 0.0097
� = 0:10 0.0967 0.0956 0.0967 0.0958 0.0059 0.0054

Panel C
GMM with quadratic variation from high-frequency return

 = 0:10 0.1113 0.1035 0.1091 0.1035 0.0253 0.0111
� = 0:25 0.2389 0.2468 0.2364 0.2463 0.0326 0.0158
� = 0:20 0.2031 0.2051 0.2030 0.2049 0.0122 0.0078

GMM with integrated volatility

 = 0:10 0.1153 0.1048 0.1131 0.1047 0.0270 0.0114
� = 0:25 0.2346 0.2455 0.2319 0.2449 0.0341 0.0160
� = 0:20 0.1984 0.1997 0.1982 0.1995 0.0097 0.0046

QML with point-in-time volatility

 = 0:10 0.1257 0.1093 0.1242 0.1107 0.0390 0.0208
� = 0:25 0.2459 0.2537 0.2432 0.2520 0.0336 0.0199
� = 0:20 0.1977 0.1960 0.1966 0.1958 0.0135 0.0084

The table reports the simulation results for the GMM and QML procedures discussed in the main text ap-
plied in estimating the stochastic volatility di#usion in Eq. (3). The total number of Monte Carlo replications
is 1000.
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Fig. 1. Distributions of t-tests. “- - -” t-statistics with 1000 observations; “—–” t-statistics with 4000 obser-
vations; “-.-.-” Normal (0,1) reference density.

Meanwhile, the accuracy of the local variance parameter estimates is a#ected by
both the long-span asymptotics and the 4ll-in asymptotics. Although the RMSE of �
does decrease with the sample size, the rate is not always close to

√
4. Also, while the

drift parameter estimates are almost una#ected by the 4ll-in asymptotics, the RMSE of
� clearly diminishes when the sampling frequency increases from “4ve-minute” to the
“continuous-time” limit.
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Fig. 2. GMM speci4cation test of overidentifying restrictions.

It is also noteworthy that for the approximate unit root process (Scenario A), the
variance parameter seems to converge at a faster rate than

√
T . Also when the variance-

of-variance parameter is large (Scenario C), the 4nite sample biases of the drift
parameter estimates are larger than for the less persistent case (Scenario B). Essentially,
the estimator has diJculties in distinguishing between a very persistent yet stationary
process and a non-stationary, near unit-root process in 4nite, or “small”, samples.
The GMM estimates of the local variance parameter, �, are systematically upward

biased, albeit not by much. Interestingly, this bias completely vanishes when the true
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integrated volatility is used in place of the “4ve-minute” quadratic variation. While
the measurement error from using the quadratic variation to approximate the integrated
volatility process is averaged out in the 4rst moment condition, the second moment
condition depends non-linearly on the measurement error. As discussed further in Sec-
tion 3.4 below, this readily explains the small bias.
In terms of relative eJciency, the GMM estimates for the two drift parameters using

the “4ve-minute” realized volatility uniformly perform better than the non-feasible QML
estimates using the unobservable “daily” point-in-time volatility. The RMSEs for the
variance parameter are also better in all but the stationary case (Scenario B). This is
particularly noteworthy insofar as the results in Zhou (2001) suggest that the QML
estimates analyzed here dominate the approximate (and computationally much more
demanding) MLE based on “daily” data.

3.3. Statistical inference

In practice, inference concerning the individual model parameters and the overall
speci4cation of the model must be based on the standard GMM type test statistics
discussed in Section 2:2:3. In this regard, the t-statistics for the drift parameters in
Fig. 1 clearly indicate that the feasible GMM estimator based on the “4ve-minute”
quadratic variation is close to normal for both of the 1000 and 4000 “daily” sample
sizes analyzed here. Meanwhile for the di#usion parameter, the use of “4ve-minute”
realized volatility in the GMM estimation gives rise to a systematic upward bias in the
t-statistics. As analyzed further below, this is consistent with the earlier explanation of
the non-dissipating measurement error in the second order moment condition. 11

Turning to Fig. 2 and the results for the standard GMM J -tests of overidentifying
restrictions, it follows that except for the near unit-root case (Scenario A), the test per-
forms very well. Moreover, the slight over-rejection and under-rejection biases largely
vanishes as the sample size increases from 1000 to 4000.

3.4. Measurement error adjustment

By construction the quadratic variation based on the simulated “4ve-minute” re-
turns provides an unbiased estimate of the true integrated volatility. At the same time,
the squared quadratic variation for any 4xed sampling interval yields an upward bi-
ased estimate of the true squared integrated volatility. 12 Consequently, while the linear
expectations operator washes out the measurement errors in the 4rst conditional
moment and the corresponding augmented moment conditions, the moment conditions

11 The corresponding t-tests for the non-feasible QML estimator based on the point-in-time volatility are
even more distorted, while the t-tests for the GMM estimates using the true integrated volatility are all
extremely close to normal. These results are available upon request.
12 Andersen and Bollerslev (1998) provide some limited simulation evidence related to the size of this

measurement error, while asymptotically based analytical expressions for certain models have recently been
derived by Barndor#-Nielsen and Shephard (2001a) and Meddahi (2001). Also, Andersen et al. (2000) and
Bai et al. (1999) discuss practical considerations related to the inherent market microstructure frictions and
the choice of the sampling frequency with actual high-frequency data.
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Table 2
Monte Carlo experiment with measurement error correction

True value Mean Median RMSE

T = 1000 T = 4000 T = 1000 T = 4000 T = 1000 T = 4000

Scenario A: GMM with quadratic variation

 = 0:03 0.0364 0.0317 0.0354 0.0315 0.0138 0.0056
� = 0:25 0.2456 0.2491 0.2384 0.2464 0.0520 0.0257
� = 0:10 0.0909 0.0994 0.0905 0.0983 0.0230 0.0127
# 0.0007 0.0004 0.0006 0.0004 0.0008 0.0005

Scenario B: GMM with quadratic variation

 = 0:10 0.1067 0.1027 0.1061 0.1023 0.0219 0.0104
� = 0:25 0.2489 0.2494 0.2484 0.2492 0.0157 0.0078
� = 0:10 0.0990 0.1049 0.0986 0.1046 0.0214 0.0121
# 0.0007 0.0004 0.0006 0.0003 0.0009 0.0005

Scenario C: GMM with quadratic variation

 = 0:10 0.1133 0.1042 0.1109 0.1043 0.0274 0.0119
� = 0:25 0.2435 0.2481 0.2400 0.2473 0.0314 0.0157
� = 0:20 0.1893 0.1999 0.1884 0.1987 0.0303 0.0162
# 0.0017 0.0010 0.0015 0.0009 0.0019 0.0013

Note. The table reports the GMM estimation results obtained by including an additive measurement error
correction term, #, in the moment conditions involving the squared integrated volatility. The RMSE column
for # gives the sample standard deviation across the 1000 Monte Carlo replications.

involving the squared quadratic variation inevitably entail a non-zero measurement er-
ror. However, it follows quite generally by the almost sure convergence of the quadratic
variation, that the expectation of the squared error term is bounded by the local maxi-
mum of the continuous local martingale process (see e.g., Karatzas and Shreve, 1997;
Protter, 1992). 13

Thus, in order to conveniently account for this error term, we simply included an
additive nuisance parameter, #, in each of the three second order moment conditions,
replacing the squared “4ve-minute” quadratic variation, V2

t+1; t+2, by V2
t+1; t+2 + #. 14

Not surprisingly, from the results reported in Table 2 and Fig. 3, the estimates for
the two drift parameters and the corresponding t-statistics are largely una#ected by
the addition of this nuisance parameter. However, while the RMSEs for � are slightly

13 In order to get a better idea about the population properties of the measurement error in the present
context, we simulated a very long time series (more than four million “days”) for each of the three scenarios.
The correlation between the “4ve-minute” quadratic variation and the true latent integrated volatility for
each of three parameterizations were 97.1%, 93.2%, and 97.3%, respectively, while the average absolute
measurement errors equaled 12.5%, 12.5%, and 12.8%, respectively. Also, the R-squares in the regressions of
the absolute measurement errors on Vt were 0.40, 0.20, and 0.40, respectively, while the squared measurement
errors were more closely related to V 2

t with “population” R-squares of 0.26, 0.16, and 0.25, respectively.
14 Of course, this simple adjustment term ignores the state dependence in the measurement errors doc-

umented in the previous footnote and formally analyzed in Barndor#-Nielsen and Shephard (2001a)
and Meddahi (2001). More complicated instrumental variables (IV) procedures could be employed to take
account of this dependence.
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Fig. 3. Distributions of t-tests with measurement error correction. “- - -” t-statistics with 1000 observations;
“—–” t-statistics with 4000 observations; “-.-.-” Normal (0,1) reference density.

larger compared to the values in Table 1, the systematic 4nite sample biases for the
local variance parameter estimates completely vanishes. The rejection frequencies for
the GMM speci4cation tests for the overidentifying restrictions in Fig. 4 also ap-
pear marginally closer to their nominal sizes. The empirical estimates in the next sec-
tion further underscore the applicability of this simple measurement error adjustment
procedure.
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Fig. 4. GMM speci4cation test of overidentifying restrictions with measurement error correction.

4. Empirical illustration

This section provides an empirical illustration using actual high-frequency 4ve-minute
returns for the foreign exchange market covering an entire decade. In addition to
the estimates for the benchmark scalar aJne di#usion, we also present estimates for
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Table 3
Summary statistics for daily DM=$ exchange rate volatility

Statistics Quadratic variation Squared return

Mean 0.5290 0.4889
SD 0.4839 1.0036
Skewness 3.7083 5.2285
Kurtosis 24.051 41.102
Minimum 0.0517 0.0000
5% Quant. 0.1384 0.0013
25% Quant. 0.2542 0.0324
Medium 0.3990 0.1513
75% Quant. 0.6252 0.4865
95% Quant. 1.3450 2.0478
Maximum 5.2453 12.2938

Note. The daily quadratic variation, or realized volatility, measure is constructed from the sum of 288
intraday 4ve-minute squared percentage returns. The sample period extends from December 1, 1986 through
December 1, 1996, for a total of 2445 observations.

models incorporating two stochastic volatility factors, leverage e#ects or asymmetries,
as well as stochastic jumps. Appendix B gives a detailed description of each model,
along with the requisite moment conditions. Motivated by the simulation results in
the previous section, we include an additive nuisance parameter in all of the relevant
moment conditions involving the squared 4ve-minute-based quadratic variation mea-
sures. 15

4.1. Data description

The data for the foreign exchange market were obtained from Olsen & Associates
in ZKurich, Switzerland, and consists of continuously recorded 4ve-minute returns for
the Deutsch Mark U.S. Dollar (DM=$) spot exchange rates. The sample for the ex-
change rates spans the period from December 1, 1986 through December 1, 1996.
After removing missing data, weekends, 4xed holidays, and other calendar e#ects,
as detailed in Andersen et al. (2001b), we are left with a total of 2445 trading
days, each of which consists of 288 4ve-minute returns over the 24-hour trading
cycle.
Table 3 provides a standard set of summary statistics for the corresponding quadratic

variation, or realized volatility, measures based on the 4ve-minute percentage returns,
along with the same statistics for the daily squared percentage returns. The sam-
ple means for the two series imply an annualized volatility (standard deviation) of
approximately 11:50 = (250 × 0:5290)1=2 and 11:05 = (250 × 0:4889)1=2 percent, re-
spectively. Although both series a#ord unbiased estimates for the true quadratic vari-
ation on any given day, the squared returns are clearly much more noisy. This is

15 Details regarding the parameter estimates for all of the models without the additive measurement error
term are available upon request. With the exception of the slightly higher values for the variance-of-variance
parameters, �, the estimates are almost identical to the ones reported here.
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Fig. 5. Daily quadratic variation and squared return.

underscored by the sample standard deviation for the 4ve-minute quadratic variation
measure which is less than half of that for the daily squared returns. The higher
order moments also indicate extremely heavy tails and signi4cant skewness to the
right in both of the unconditional distributions. Meanwhile, visual inspection of the
corresponding time series plots in Fig. 5, clearly indicates a high degree of serial
correlation in the underlying volatility process. The next section presents the estima-
tion results from the di#erent stochastic volatility models designed to capture these
e#ects.
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Table 4
Stochastic volatility model estimates

dpt =
√
V1t + V2t dBt + J dN (%t),

dV1t = 
1(�1 − V1t) dt + �1
√
V1t dW1t ;

dV2t = 
2(�2 − V2t) dt + �2
√
V2t dW2t ,

where corr(dBt ; dW1t) = & and J ∼ N(�J ; �2J )

1FSV 1FSVJ 1FSVL 2FSV 2FSVJ


1 0.1464(0.0387) 0.1389(0.0745) 0.1465(0.0375) 0.5708(0.0031) 0.5859(0.0032)
�1 0.5172(0.0342) 0.0415(0.2080) 0.5172(0.0355) 0.3257(0.0398) 0.3067(0.0179)
�1 0.5789(0.0580) 0.6109(0.0967) 0.5786(0.0578) 0.2286(0.0006) 0.2292(0.0001)
% 52.6839(3.8436) 5.6930(0.6782)
�J −0:0002(0:0003) −0:0002(0:0026)
�J 0.0974(0.0167) 0.0807(0.0030)
& −0:0243(0:0343)

2 0.0757(0.8984) 0.0734(0.0335)
�2 0.1786(0.0345) 0.1599(0.0168)
�2 0.1096(0.0063) 0.1098(0.00004)

GMM test of overidentifying restrictions
X2 12.1476 18.5808 12.1526 6.0992 6.2216
d. o. f. (2) (1) (2) (3) (2)
p-Value 0.0023 0.0001 0.0023 0.1069 0.0446

Note. The table reports the GMM estimates for the 4ve di#erent model speci4cations: one-factor stochastic
volatility (1FSV), one-factor stochastic volatility with jumps (1FSVJ), one-factor stochastic volatility with
leverage e#ect (1FSVL), two-factor stochastic volatility (2FSV), and two-factor stochastic volatility with
jumps (2FSVJ). The sample period for the DM=$ exchange rates extends from December 1, 1986 through
December 1, 1996, for a total of 2445 daily observations. The daily quadratic variation measures are based
on intraday 4ve-minute returns. The actual moment conditions underlying the GMM estimates are detailed
in Table 5. The asymptotic variance–covariance matrix for the parameter estimates is calculated using a
Newey–West weighting scheme with a lag-length of 4ve for the 1FSV, 1FSVJ, and 1FSVL models, and a
lag-length of 60 for the 2FSV and 2FSVJ models.

4.2. Estimation results

The second column in Table 4 reports the estimates for the baseline one-factor
stochastic volatility model (1FSV). As expected, the long-run mean parameter
(�= 0:517) is fairly close to the sample mean of the underlying 4ve-minute quadratic
variation (0.529) reported in Table 3. Also, not surprisingly, the estimate for the
variance-of-variance parameter, or �, have the largest standard error of all the
parameters. These results are generally in line with the simulation evidence reported in
the previous section, and highlight the usefulness of the new estimation procedure in
actual empirical applications. Meanwhile, the estimate for the mean reversion parame-
ter, 
, is clearly on the high-side relative to the values reported in the extant literature
using more complicated discrete time ARCH and stochastic volatility type models. The
parameter estimates also violate the stationary condition �26 2
� in the 1FSV as well
as the 1FSVJ and 1FSVL models. The GMM omnibus test for the overidentifying
restrictions 4rmly rejects the 1FSV model.
The inability of the simple one-factor stochastic volatility model to fully account for

the dynamic dependencies in the daily DM=$ volatility is, of course, not surprising (see
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e.g., Bates, 1996; Gallant and Long, 1997). A number of recent empirical studies have
argued for the relevance of including multiple volatility factors, leverage e#ects, and=or
jump components when modeling other speculative returns. The remaining columns in
the table present the estimation results for various extensions of the baseline model
speci4cally designed to accommodate each of these features.
The estimates for the one-factor jump-di#usion stochastic volatility (1FSVJ) model

are reported in the third column. Compared to the 1FSV model, the estimate for the
mean reversion parameter is slightly smaller, while the local variance parameter is
slighter larger. The long-run mean parameter for the stochastic volatility factor is dra-
matically reduced to only 0.042. However, considering the expected jump volatility
%(�2J + �2J ) = 0:500, the total expected unconditional volatility 0.541 is still very close
to the sample mean. Unlike existing estimates for equity index returns, which tend
to imply negative jumps on average, the average jump size for the DM=$ foreign
exchange market is estimated to be close to zero. The daily jump rate of 52.7% is
quite high, corresponding to roughly 100 jumps=yr. Meanwhile, the estimated standard
deviation of the jumps is fairly small (one-tenth of a percent). The GMM
test for the overidentifying restrictions also strongly rejects the 1FSVJ
model.
The close correspondence between the estimates for 
, �, and � for the one-factor

stochastic volatility model allowing for asymmetries or leverage e#ects (1FSVL) re-
ported in the fourth column and the estimates for the baseline 1FSV model is to be
expected. The 4rst six moment conditions employed in the estimation are identical
across the two models, and the last moment added to the 1FSVL is conditionally
orthogonal to the other moments and only helps to identify the leverage coeJcient,
&. Also, not surprisingly in the present context the actual estimate of the leverage
coeJcient is insigni4cant and close to zero.
The 4fth column in the table reports the estimates for the two-factor stochastic

volatility (2FSV) model. One of the two volatility factors is strongly mean-reverting,
and close to independent (
1 = 0:571); the other is highly persistent, and close to
non-stationary (
2 = 0:076), although it is not very accurately estimated. Meanwhile,
the sum of the estimates for the long-run mean parameters (�1 + �2 = 0:504) is fairly
close to the sample mean of the 4ve-minute quadratic variation (0.529). Both of the
local variance parameters are also highly statistically signi4cant, with the one associated
with the 4rst strongly mean-reverting volatility factor being roughly double of that
for the more persistent second factor. These results are generally consistent with the
recent 4ndings in Alizadeh et al. (2001), who rely on the daily high-low range in
estimating two-factor stochastic volatility models for several di#erent exchange rates.
It is noteworthy, that by including the second stochastic volatility factor, the GMM
test for the overidentifying restrictions reported in Table 4 no longer rejects the model
outright.
The last column in the table reports the estimation result for a two-factor stochas-

tic volatility jump-di#usion model (2FSVJ). Consistent with the idea that the high
jump-intensity (52.68%) for the 1FSVJ model is in part capturing the inPuence of the
omitted less persistent volatility factor, the estimated jump rate for the 2FSVJ model is
reduced to 5.69%, or roughly 15 jumps per year with a standard deviation of 8 basis
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points. This 4nding of frequent small jumps is consistent with the results reported in
Bates (1996) based on weekly foreign exchange options, and somewhat higher than
the estimates for other 4nancial assets recently reported in the literature. The para-
meter estimates for the two stochastic volatility factors are very close to the results for
the 2FSV model (without jumps). Interestingly however, the estimates for the 2FSVJ
model are more precisely determined. The implied steady state for the daily volatility,
�1 + �2 + %(�2J +�

2
J )=0:504, also closely matches the sample mean of 0.529. Still, the

addition of the two moment conditions used to identify the jump component results
in a p-value of “only” 0.045 for the GMM omnibus test. In order to get a better
idea about the 4t of the various models, we, therefore, next report a series of speci4c
conditional moment diagnostic tests.

4.3. Moment condition tests

The standard GMM omnibus tests reported in Table 4 are not particularly informa-
tive about the source(s) of model mis-speci4cation. Following Tauchen (1985), it is
relatively straightforward to construct a series of diagnostic t-tests associated with each
of the moment conditions underlying the estimation, explicitly taking into account the
variations resulting from the parameter estimation error uncertainty. In the notations of
Section 2.3. above,

t = diag{[Ŵ − ĝ�(ĝ
′
�Ŵ

−1
ĝ�)

−1ĝ′�]}−1=2
√
T ĝ;

where Ŵ refers to the estimated weighting matrix, ĝ denotes the vector of moment
conditions evaluated at the GMM parameter estimates, and ĝ′� gives the corresponding
matrix of 4rst derivatives with respect to each of the estimated parameters.
The resulting t-statistics for the di#erent models are reported in Table 5. The apparent

poor 4t of the 1FSV model comes primarily from the moment involving the squared
quadratic variation and the lagged squared quadratic variation (−4:459). This moment is
most directly related to the dynamics of the volatility and the volatility-of-the-volatility.
Allowing for stochastic jumps, as in the 1FSVJ model, the t-ratio associated with this
same moment is reduced to −2:914. At the same time, the t-ratio for the moment
involving the product of the squared quadratic variation with the lagged quadratic
variation increases from −0:005 to −1:759. Since the moments are the same, and the
cross moment appears to 4t reasonably well, the t-ratios for the 1FSVL model are all
very similar to the ones for the 1FSV model. Of course, all of these three models are
rejected by the GMM omnibus tests in Table 4.
Interestingly, while the omnibus tests for the 2FSV(J) models in Table 4 are fairly

supportive, the corresponding moment diagnostics reported in the 4fth and sixth
columns in Table 5 indicate that in spite of closely matching the 4rst eight moment
conditions, the two-factor models are not able to explain the empirical correlation be-
tween the squared quadratic variation and the lag six and lag 12 squared quadratic
variation. It is noteworthy, that while the addition of the jump component improves
the 4t of the sixth lagged squared moment, the 4t involving the 12 lagged squared
moment actually worsens. As such, these results point towards the existence of impor-
tant long-run volatility dependencies not captured by the two-factor models analyzed
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Table 5
Moment condition tests

Moment condition 1FSV 1FSVJ 1FSVL 2FSV 2FSVJ

E[Vt+1; t+2|Gt ]−Vt+1; t+2 0.0071 −0:0441 0.0071
E[V2

t+1; t+2|Gt ]−V2
t+1; t+2 −0:0162 −0:0338 −0:0161

E[Vt+1; t+2Vt−1; t |Gt ]−Vt+1; t+2Vt−1; t −0:2288 −0:2228 −0:2250
E[V2

t+1; t+2Vt−1; t |Gt ]−V2
t+1; t+2Vt−1; t −0:0049 −1:7589 −0:0045

E[Vt+1; t+2V
2
t−1; t |Gt ]−Vt+1; t+2V

2
t−1; t −0:3301 −0:5222 −0:3264

E[V2
t+1; t+2V

2
t−1; t |Gt ]−V2

t+1; t+2V
2
t−1; t −4:4594 −2:9140 −4:4727

E[pt+1|Gt ]− pt+1 0.0564 −0:0822
E[p2

t+1|Gt ]− p2
t+1 −1:3092 −0:4988

E[pt+1(Vt+1; t+2 − b)=a|Gt ]− pt+1(Vt+1; t+2 − b)=a 1.0244
E[Vt+5; t+6|Gt ]−Vt+5; t+6 0.0024 0.0041
E[Vt+5; t+6Vt−1; t |Gt ]−Vt+5; t+6Vt−1; t −0:0053 −0:0055
E[Vt+5; t+6Vt−7; t−6|Gt ]−Vt+5; t+6Vt−7; t−6 0.0187 0.0186
E[Vt+5; t+6V

2
t−1; t |Gt ]−Vt+5; t+6V

2
t−1; t 0.0362 0.0354

E[Vt+5; t+6V
2
t−7; t−6|Gt ]−Vt+5; t+6V

2
t−7; t−6 0.2242 0.2107

E[V2
t+5; t+6|Gt ]−V2

t+5; t+6 0.0170 0.0258
E[V2

t+5; t+6Vt−1; t |Gt ]−V2
t+5; t+6Vt−1; t 0.0654 0.0722

E[V2
t+5; t+6Vt−7; t−6|Gt ]−V2

t+5; t+6Vt−7; t−6 1.0436 1.0860
E[V2

t+5; t+6V
2
t−1; t |Gt ]−V2

t+5; t+6V
2
t−1; t 7.6160 4.3396

E[V2
t+5; t+6V

2
t−7; t−6|Gt ]−V2

t+5; t+6V
2
t−7; t−6 4.5445 11.0394

Note. The table reports the diagnostic t-statistics associated with each of the moment conditions underlying
the model estimates reported in Table 4. For further discussion of the construction of the test statistics see
Section 4.3.

here. This is consistent with recent empirical studies documenting long-memory volatil-
ity dependencies (see e.g., Andersen et al. (2001b), and the references therein). The
formulation and estimation of more complicated continuous time stochastic volatility
models explicitly incorporating such dependencies constitute an active area of current
research.

5. Concluding remarks

Exploiting closed form analytic expressions for the conditional moments of inte-
grated volatility coupled with empirical quadratic variation measures constructed from
high-frequency intraday data, we proposed a new class of GMM-type estimators for
stochastic volatility di#usions. In contrast to other computationally demanding estima-
tion procedures routinely employed in the literature, the GMM estimator developed
here is very easy to implement, requiring only the solution to a standard non-linear
optimization problem. Our Monte Carlo evidence shows that the procedure results in
highly accurate parameter estimates and reliable statistical inference in realistic 4nite
sample settings. In implementing the new estimator with actual 4ve-minute returns
from the foreign exchange market, our results con4rm prior evidence in the litera-
ture concerning the existence of strong volatility clustering at the inter-daily level,
and the presence of multiple volatility factors, frequent symmetric jumps, and possible
long-memory dependencies.
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It would be interesting to extend the estimator developed here to more complicated
continuous time processes, including the possibility of long-memory volatility dynamics.
More ambitious empirical applications might also entail the estimation of multivariate
di#usions, which in turn would require vector versions of the integrated volatility and
quadratic variation measures exploited here. The distributional features of the integrated
volatility coupled with additional assumptions about the price of volatility risk may also
be used in the pricing of 4nancial options and the joint estimation of objective and
risk neutral dynamics (Garcia et al. (2001) o#er some intriguing recent developments
along these lines).
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Appendix A. Conditional moments of the baseline model

A.1. Conditional mean of integrated volatility

The conditional mean of the point-in-time volatility satis4es,

E(VT |Ft) = Vte−
(T−t) + �(1− e−
(T−t)) = �T−tVt + �T−t : (A.1)

Hence,

E(Vt;T |Ft) = E
(∫ T

t
Vs ds

∣∣∣∣Ft

)

=
∫ T

t
E(Vs|Ft) ds

=
∫ T

t
[Vte−
(s−t) + �(1− e−
(s−t))] ds

= Vt
1


(1− e−
(T−t)) + �(T − t)− �



(1− e−
(T−t))

= aT−tVt + bT−t : (A.2)
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For notational simplicity, denote the parameters for the daily horizon, or T − t=1, by
a ≡ (1=
)(1 − e−
), b ≡ � − (�=
)(1 − e−
), � ≡ e−
 and � ≡ �(1 − e−
). Focusing
on the one-day horizon, it follows that:

E[E(Vt+1; t+2|Ft+1)|Ft] = aE(Vt+1|Ft) + b

= a(�Vt + �) + b

= �[E(Vt; t+1|Ft)− b] + a� + b;

which simpli4es as

E(Vt+1; t+2|Ft) = �E(Vt; t+1|Ft) + �:

Finally, by the Law of Iterated Expectations or reduction in information sets (Meddahi
and Renault, 2000),

E[E(Vt+1; t+2|Ft)|Gt] = E(Vt+1; t+2|Gt) = �E(Vt; t+1|Gt) + �: (A.3)

A.2. Conditional variance of integrated volatility

The stochastic di#erential equation (SDE) for E(Vt;T |Ft) may be generated as a
function of Vt by applying Itô’s formula to the aJne di#usion in Eq. (3), 16

dE(Vt;T |Ft) =
[
aT−t
(�− Vt) +

@aT−t
@t

Vt +
@bT−t
@t

]
dt + aT−t�

√
Vt dWt;

which may be further simpli4ed as

dE(Vt;T |Ft) =−Vt dt + aT−t�
√
Vt dWt: (A.4)

Now 4x the upper limit T , and let the lower limit t be time varying. The Itô integral
implied by the SDE in Eq. (A.4) then takes the form

E(VT;T |FT ) = E(Vt;T |Ft) +
∫ T

t
(−Vs) ds+

∫ T

t
aT−s �

√
Vs dWs:

However, E(VT;T |FT ) = 0, which implies that

Vt;T − E(Vt;T |Ft) =
∫ T

t
aT−s �

√
Vs dWs:

By standard arguments and the substitution of Eq. (A.1)

Var(Vt;T |Ft) = E[(Vt;T − E(Vt;T |Ft))2|Ft]

= E

{[∫ T

t
aT−s �

√
Vs dWs

]2∣∣∣∣∣Ft

}

16 The simple version of Itô’s Lemma for a smooth function f(Vt ; t; T )∈C2 of a di#usion process Vt states
that

df(Vt ; t; T ) = [fV (Vt ; t; T ) � (Vt ; t) + ft(Vt ; t; T ) + 1
2 fVV (Vt ; t; T ) �

2(Vt ; t)] dt + fV (Vt ; t; T ) � (Vt ; t) dWt;

where �(Vt ; t) and �(Vt ; t) denote the drift and di#usion functions, respectively, de4ning the Vt process.
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=
∫ T

t
a2T−s �

2 E(Vs|Ft) ds

=
∫ T

t
a2T−s �

2[�s−tVt + �s−t] ds

= AT−tVt + BT−t ; (A.5)

where

AT−t =
�2


2

[
1


− 2e−
(T−t)(T − t)− 1



e−2
(T−t)

]
;

BT−t =
�2


2

[
�(T − t)(1 + 2e−
(T−t))− 3�



(1− e−
(T−t)) +

�
2


(1− e−
(T−t))2
]

=
�2


2

[
�(T − t)

(
1 + 2e−
(T−t)

)
+

�
2


(e−
(T−t) + 5)(e−
(T−t) − 1)
]
:

It follows also from Cox et al. (1985) and Eq. (A.1) above that,

E(V 2
T |Ft) = Var(VT |Ft) + [E(VT |Ft)]2

= Vt
�2



(e−
(T−t) − e−2
(T−t)) +

�2�
2


(1− e−
(T−t))2

+ [�T−tVt + �T−t]2

=CT−tVt + DT−t + �2T−tV
2
t + �2T−t + 2�T−t�T−tVt

= �2T−tV
2
t + [CT−t + 2�T−t�T−t]Vt + [DT−t + �2T−t]; (A.6)

where

CT−t =
�2



(e−
(T−t) − e−2
(T−t));

DT−t =
�2�
2


(1− e−
(T−t))2:

Focusing on the one-day horizon, (A.5) and (A.2) implies that

E(V2
t; t+1|Ft) = Var(Vt; t+1|Ft) + [E(Vt; t+1|Ft)]2

= a2V 2
t + (2ab+ A)Vt + (b2 + B): (A.7)

Leading the arguments by one period and applying the Law of Iterated Expectation
yields

E[E(V2
t+1; t+2|Ft+1)|Ft] = a2 E(V 2

t+1|Ft) + (2ab+ A) E(Vt+1|Ft) + (b2 + B):
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Now substituting for E(Vt+1|Ft) by Eq. (A.1) and E(V 2
t+1|Ft) by Eq. (A.6), and re-

versely substituting out V 2
t by Eq. (A.7) and Vt by Eq. (A.2), it follows that

E(V2
t+1; t+2|Ft) = a2[�2V 2

t + (C + 2��)Vt + (D + �2)]

+ (2ab+ A)(�Vt + �) + (b2 + B)

= �2a2V 2
t + [a2(C + 2��) + �(2ab+ A)]Vt

+[a2(D + �2) + �(2ab+ A) + (b2 + B)]

= �2[E(V2
t; t+1|Ft)− (2ab+ A)Vt − (b2 + B)]

+ [a2(C + 2��) + �(2ab+ A)]Vt

+[a2(D + �2) + �(2ab+ A) + (b2 + B)]

= �2 E(V2
t; t+1|Ft)

+ [a2(C + 2��) + (�− �2)(2ab+ A)]
1
a
[E(Vt; t+1|Ft)− b]

+ [a2(D + �2) + �(2ab+ A) + (1− �2)(b2 + B)]

= �2 E(V2
t; t+1|Ft)

+
1
a
[a2(C + 2��) + (�− �2)(2ab+ A)] E(Vt; t+1|Ft)

− b
a
[a2(C + 2��) + (�− �2)(2ab+ A)]

+ [a2(D + �2) + �(2ab+ A) + (1− �2)(b2 + B)]: (A.8)

Lastly, by the Law of Iterated Expectations,

E[E(V2
t+1; t+2|Ft)|Gt] = E(V2

t+1; t+2|Gt)

= �2 E(V2
t; t+1|Gt)

+
1
a
[a2(C + 2��) + (�− �2)(2ab+ A)] E(Vt; t+1|Gt)

− b
a
[a2(C + 2��) + (�− �2)(2ab+ A)]

+ [a2(D + �2) + �(2ab+ A) + (1− �2)(b2 + B)]

=H E(V2
t; t+1|Gt) + I E(Vt; t+1|Gt) + J; (A.9)

where H = �2, I =1=a[a2(C +2��)+ (�− �2)(2ab+A)], and J =−b=a[a2(C +2��)+
(�− �2)(2ab+ A)] + [a2(D + �2) + �(2ab+ A) + (1− �2)(b2 + B)].
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Appendix B. Extensions of the baseline model

This appendix demonstrates how the moment conditions for the one-factor square-root
volatility model may be extended to allow for multiple volatility factors, leverage e#ects
or asymmetries, and jump components.

B.1. Multifactor stochastic volatility model

Consider the model,

dpt =
√
V1t + V2t dBt;

dV1t = 
1(�1 − V1t) dt + �1
√
V1t dW1t ;

dV2t = 
2(�2 − V2t) dt + �2
√
V2t dW2t : (B.1)

Also, let Vt = V1t + V2t , and Vt;T ≡ ∫ T
t Vs ds=V1t;T +V2t;T ≡ ∫ T

t V1s ds+
∫ T
t V2s ds.

B.1.1. First moment
From Appendix A.1,

V1t+1; t+2 = �1V1t; t+1 + �1 +MA(1);

V2t+1; t+2 = �2V2t; t+1 + �2 +MA(1); (B.2)

where the symbolic MA(1) representations for the error structures have the following
“closed-from” expressions:

MA(1) =−
∫ t+2

t+1

∫ s

t+1
�1
√
V1u dW1u ds+ �1

∫ t+1

t

∫ s

t
�1
√
V1u dW1u ds;

MA(1) =−
∫ t+2

t+1

∫ s

t+1
�2
√
V2u dW2u ds+ �2

∫ t+1

t

∫ s

t
�2
√
V2u dW2u ds: (B.3)

Using the standard argument that ARMA(1; 1) + ARMA(1; 1) = ARMA(2; 2) (Granger
and Morris, 1976), it follows that

(1− �1L)(1− �2L)Vt+1; t+2 = [(1− �2)�1 + (1− �1)�2] +MA(2): (B.4)

Thus, even though the autocovariance functions are not explicitly solvable (due to
the unknown heteroscedasticity), additional moment conditions involving Vt+1; t+2 are
readily constructed through augmentation using appropriately lagged instruments.

B.1.2. Second moment
From Appendix A.2,

V2
1t+1; t+2 = H1V

2
1t; t+1 + I1V1t; t+1 + J1 +MA(1);

V2
2t+1; t+2 = H2V

2
2t; t+1 + I2V2t; t+1 + J2 +MA(1): (B.5)
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Of course, V2
t+1; t+2 =V2

1t+1; t+2 +V2
2t+1; t+2 + 2V1t+1; t+2V2t+1; t+12. However, by mul-

tiplication of the two components in Eq. (B.2),

2V1t+1; t+2V2t+1; t+2 = 2�1�2V1t; t+1V2t; t+1 + 2�1�2V1t; t+1

+2�2�1V2t; t+1 + 2�1�2 +MA(1); (B.6)

where the MA(1) error structure follows by the assumption that the two factors are
independent. Now multiply the two equations in (B.5) by (1 − H2L)(1 − �1�2L) and
(1 − H1L)(1 − �1�2L), respectively, multiply Eq. (B.6) by (1 − H1L)(1 − H2L), and
aggregate the results,

(1− H1L)(1− H2L)(1− �1�2L)V2
t+1; t+2

= [(1− H2L)(1− �1�2L)I1 + 2�1�2(1− H1L)(1− H2L)]V1t; t+1

+ [(1− H1L)(1− �1�2L)I2 + 2�2�1(1− H1L)(1− H2L)]V2t; t+1

+ [(1− H2)(1− �1�2)J1 + (1− H1)(1− �1�2)J2

+ 2�1�2(1− H1)(1− H2)] +MA(3): (B.7)

Finally, multiply Eq. (B.7) by (1 − �1L)(1 − �2L), and each of the two components
in Eq. (B.2) by L(1 − �2L)[(1 − H2L)(1 − �1�2L)I1 + 2�1�2(1 − H1L)(1 − H2L)] and
L(1 − �1L)[(1 − H1L)(1 − �1�2L)I2 + 2�2�1(1 − H1L)(1 − H2L)], respectively, and it
follows by aggregation that:

(1− �1L)(1− �2L)(1− H1L)(1− H2L)(1− �1�2L)V2
t+1; t+2

=�1(1− �2)[(1− H2)(1− �1�2)I1 + 2�1�2(1− H1)(1− H2)]

+�2(1− �1)[(1− H1)(1− �1�2)I2 + 2�2�1(1− H1)(1− H2)]

+ (1− �1)(1− �2)

×[(1− H2)(1− �1�2)J1 + (1− H1)(1− �1�2)J2 + 2�1�2(1− H1)(1− H2)]

+MA(5): (B.8)

Additional moment conditions are readily constructed using instruments lagged six or
more periods relative to V2

t+1; t+2.

B.2. Leverage eEect

Consider the model,

dpt =
√
Vt dBt;

dVt = 
(�− Vt) dt + �
√
Vt dWt;

corr(dBt; dWt) = &: (B.9)
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Adding the log price pt to the continuous 4ltration Ft = �{ps; Vs;−∞¡s6 t}, it
follows that

E(pTVT |Ft) =ptVte−
(T−t) + (pt
 + &�)�(T − t)

+&�
[
Vt − �



(1− e−
(T−t))
]
: (B.10)

To derive this result, apply Itô’s Lemma to ptVt , express the product as a stochastic
di#erential equation, and take the conditional expectation of pTVT ,

E(pTVT |Ft) = ptVt + E
{∫ T

t
[pu
(�− Vu) + &�Vu] du|Ft

}
:

Interchanging the two integration operators and taking derivatives of both sides with
respect to the upper time limit, then yields the 4rst-order linear ordinary di#erential
equation

dE(psVs|Ft)
ds

=−
E(psVs|Ft) + 
�E(ps|Ft) + &�E(Vs|Ft);

from which Eq. (B.10) follows by existing solutions for E(pT |Ft) and E(VT |Ft).
Focusing on the unit time-interval, or T = t + 1, and using the earlier result that
E(Vt; t+1|Ft) = aVt + b, the left-hand side (LHS) of Eq. (B.10) may be
written as

E{pt+1 E[(Vt+1; t+2 − b)=a|Ft+1]|Ft}= E[pt+1(Vt+1; t+2 − b)=a|Ft]:

Similarly, the right-hand side (RHS) of Eq. (B.10) may be expressed as

E[pt(Vt; t+1 − b)=a|Ft]e−
 + (pt
 + &�)�

+
&�



E[(Vt; t+1 − b)=a|Ft](1− e−
)− &��



(1− e−
):

Now taking conditional expectations of the LHS and RHS expressions above with re-
spect to the extended discrete 4ltration Gt = �{pt−s;Vt−s−1; t−s; s= 0; 1; 2; : : : ;∞}, the
cross moment condition becomes

E[pt+1(Vt+1; t+2 − b)=a|Gt] = E[pt(Vt; t+1 − b)=a|Gt]e−
 + (pt
 + &�)�

+(&�=
){E[(Vt; t+1 − b)=a|Gt]− �}(1− e−
);

(B.11)

which is directly implementable. 17

17 As pointed out by Nour Meddahi, although the moment condition in (B.11) involves a non-linear function
of the (non-stationary) price as opposed to the (stationary) return, the GMM estimator remains consistent
(Kitamura and Phillips, 1997). This also holds true for the jump process analyzed below.
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B.3. Jump component

Consider the model,

dpt =
√
Vt dBt + J dN (%t);

dVt = 
(�− Vt) dt + �
√
Vt dWt; (B.12)

where the Brownian motion dBt and the Poisson process J dN (%t) are independent, and
the jumps arrive at the exponential rate of % dt with the size of the jumps, J , determined
by the normal distribution N(�J ; �2J ). Also, de4ne the extended continuous and discrete
4ltrations, Ft = �{ps; Vs;−∞¡s6 t} and Gt = �{pt−s;Vt−s−1; t−s; s=0; 1; 2; : : : ;∞},
respectively. The jump parameters may then be identi4ed from the following two
moment conditions:

E(pT |Gt) =pt + %�J (T − t);

E(p2
T |Gt) =p2

t + 2%�J (T − t)pt + 2%2�2J (T − t)

+ %(�2J + �2J )(T − t) + E(Vt;T |Gt): (B.13)

The 4rst equation follows directly by noticing that

E(pT |Ft) = pt + E
[∫ T

t
%EJ (J )|Ft

]
:

In deriving the second equation, 4rst apply Itô’s Lemma to p2
t , and write p2

T as a
stochastic integral starting at p2

t . Then, taking conditional expectation of p2
T yields,

E(p2
T |Ft) =p2

t + E
{∫ T

t
[Vs + %EJ ((ps + J )2 − p2

s )] ds|Ft

}

=p2
t + E(Vt;T |Ft) + E

{∫ T

t
[%2psEJ (J ) + %EJ (J 2)] ds|Ft

}
:

Substituting the 4rst equation, evaluating the integral, and changing the information
sets to Gt , this reduces to the second expression in Eq. (B.13).
It is important to recognize, that in the presence of jumps the quadratic variation

comprises two components, QVt;T =
∫ T
t Vs ds +

∫ T
t J

2 dN (%s). Hence, in implementing
the moment conditions involving Vt;T , the following substitutions are also required:

E(Vt;T |Gt) = E(QVt;T |Gt)− %E(J 2)(T − t);

E(V2
t;T |Gt) = E(QV 2

t;T |Gt)− 2E(QVt;T |Gt)%E(J 2)(T − t) + %E(J 4)(T − t):
(B.14)

B.4. Multifactor model with jumps

Consider the model,

dpt =
√
V1t + V2t dBt + J dN (%t);
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dV1t = 
1(�1 − V1t) dt + �1
√
V1t dW1t ;

dV2t = 
2(�2 − V2t) dt + �2
√
V2t dW2t ; (B.15)

where dN (%t) is a Poisson jump arrival process and J ∼ N(�J ; �2J ). Combining the
arguments in Appendix B.1 and B.3 readily results in the following four conditional
moments:

E(pT |Gt) = pt + %�J (T − t);

E(p2
T |Gt) = p2

t + 2%�J (T − t)pt + 2%2�2J (T − t)

+ %(�2J + �2J )(T − t) + E(Vt;T |Gt);

(1− �1L)(1− �2L)Vt+1; t+2 = [(1− �2)�1 + (1− �1)�2] +MA(2);

(1− �1L)(1− �2L)(1− H1L)(1− H2L)(1− �1�2L)V2
t+1; t+2

=�1(1− �2)[(1− H2)(1− �1�2)I1 + 2�1�2(1− H1)(1− H2)]

+�2(1− �1)[(1− H1)(1− �1�2)I2 + 2�2�1(1− H1)(1− H2)]

+ (1− �1)(1− �2)

×[(1− H2)(1− �1�2)J1 + (1− H1)(1− �1�2)J2

+ 2�1�2(1− H1)(1− H2)] +MA(5): (B.16)
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