• 清华大学
  • 经管邮箱
  • 教职工内网
  • 用户登录
  • EN
毛小介

管理科学与工程系    副教授

电话:(86)(10)62797044

办公室:李华楼B418

邮箱:maoxj@sem.tsinghua.edu.cn

开放时间:预约

教育经历

2016 ~ 2021 博士,统计学与数据科学,康奈尔大学

2012 ~ 2016 学士,数理经济与数理金融,武汉大学


更多

工作经历

2024.07 ~ 至今  副教授,清华大学管理科学与工程系

2021.07 ~ 2024.07  助理教授,清华大学管理科学与工程系



更多

讲授课程

管理科学中的实证方法(博士)

数据分析:推断与决策(硕士)

概率论与数理统计(本科)



更多

研究领域

因果推断、数据驱动的优化决策


更多

学术成果

论文详见谷歌学术页面https://scholar.google.com/citations?user=XtSSJm0AAAAJ&hl=en&oi=ao


论文发表

  • Jian Chen, Zhehao Li, Xiaojie Mao. Learning with Selectively Labeled Data from Multiple Decision-makersInternational Conference on Machine Learning, 2025. (中国计算机学会A类会议)

  • Yichun Hu, Nathan Kallus, Xiaojie Mao, Yanchen Wu. Contextual Linear Optimization with Bandit FeedbackThe 38th Annual Conference on Neural Information Processing Systems, 2024. (中国计算机学会A类会议)

  • Guido Imbens, Nathan Kallus, Xiaojie Mao, Yuhao Wang. Long-term causal inference under persistent confounding via data combinationJournal of the Royal Statistical Society Series B, 2024. (统计学国际四大期刊)

  • Nathan Kallus, Xiaojie Mao. On the Role of Surrogates in the Efficient Estimation of Treatment Effects with Limited Outcome Data. Journal of the Royal Statistical Society Series B, 2024.(统计学国际四大期刊

  • Nathan Kallus, Xiaojie Mao, Masatoshi Uehara. Localized Debiased Machine Learning: Efficient Estimation of Quantile Treatment Effects and Beyond. Journal of Machine Learning Research, 2024. (中国计算机学会A类期刊)

  • Andrew Bennett, Nathan Kallus, Xiaojie Mao, Whitney Newey, Vasilis Syrgkanis, Masatoshi Uehara. Inference on Strongly Identified Functionals of Weakly Identified Functions. Conference on Learning Theory, 2023. (中国人工智能学会A类会议)

  • Andrew Bennett, Nathan Kallus, Xiaojie Mao, Whitney Newey, Vasilis Syrgkanis, Masatoshi Uehara. Minimax Instrumental Variable Regression and L2 Convergence Guarantees without Identification or Closedness. Conference on Learning Theory, 2023. (中国人工智能学会A类会议)

  • Nathan Kallus, Xiaojie Mao, Kaiwen Wang, Zhengyuan Zhou (2022). Doubly Robust Distributionally Robust Off-Policy Evaluation and Learning. International Conference on Machine Learning, 2022. (中国计算机学会A类会议)

  • Nathan Kallus, Xiaojie Mao. Stochastic Optimization Forests. Management Science, 2022(UTD 24期刊)

  • Yichun Hu, Nathan Kallus, Xiaojie Mao. Fast Rates for Contextual Linear Optimization. Management Science (Fast Track), 2022. (UTD 24期刊)

  • Yichun Hu, Nathan Kallus, Xiaojie Mao. Smooth Contextual Bandits: Bridging the Parametric and Non-differentiable Regret Regimes. Operations Research, 2021. (UTD 24期刊,论文获得Finalist for Applied Probability Society 2020 Best Student Paper Competition). 

  • Nathan Kallus, Xiaojie Mao, Angela Zhou. Assessing Algorithmic Fairness with Unobserved Protected Class Using Data Combination. Management Science Special Section on Data-Driven Prescriptive Analytics, 2022. (UTD 24期刊, Featured Article in Management Science Vol 68 Issue 3 with invited review at https://www.informs.org/Blogs/ManSci-Blogs/Management-Science-Review/If-You-Can-t-Measure-It-Bound-It-Credibly-Auditing-Algorithms-for-Fairness2).  

  • Nathan Kallus, Xiaojie Mao, Angela Zhou. Interval Estimation of Individual-Level Causal Effects Under Unobserved Confounding. The 22nd International Conference on Artificial Intelligence and Statistics, 2019.

  • Jiahao Chen, Nathan Kallus, Xiaojie Mao, Geoffry Svacha, Madeleine Udell. Fairness Under Unawareness: Assessing Disparity When Protected Class Is Unobserved. ACM FAT* 2019: Conference on Fairness, Accountability, and Transparency in Machine Learning.

  • Nathan Kallus, Xiaojie Mao, Madeleine Udell. Causal Inference with Noisy and Missing Covariates via Matrix Factorization. The 32nd Annual Conference on Neural Information Processing Systems, 2018. (中国计算机学会A类会议) 


其他工作论文请见简历(https://cloud.tsinghua.edu.cn/f/a23b45043ed8466d844b/



更多

所获荣誉

科研项目

数据驱动的决策方法,国家自然科学基金(优秀青年科学基金项目),主持,2024 ~ 2026

基于数据结合的长期因果效应推断与决策,国家自然科学基金(青年科学基金项目),主持,2023 ~ 2025

面向供应链韧性与安全的行为决策理论与方法,国家自然科学基金(重大项目子课题),参与,2023 ~ 2027

硬件资源受限下的高效智能控制,科技部(科技创新2030重大项目),参与,2023 ~ 2025


奖项

清华大学2023年度教学优秀奖

清华大学经济管理学院2024年教学优秀一等奖,2023年先进工作者,2023年科研优秀奖,2023年教学优秀二等奖

Applied Probability Society  Best Student Paper Competition, Finalist, 2020


更多

其他

指导学生:详情请见简历(https://cloud.tsinghua.edu.cn/f/a23b45043ed8466d844b/)


本人不定期有助研项目的机会,欢迎数理基础或编程能力扎实、有科研兴趣且自驱力强的本硕同学邮件联系我。请在邮件中附带简历和成绩单,并简要描述(1)上过的数学、概率统计、运筹优化、计算机科学相关的课程;(2)预计能投入的时间(如预计参与的期限以及参与期间每周大致能够投入的时间,请提供合理可行的估计);(3)考虑参加助研工作的动机(如个人兴趣、未来发展计划等)。


对于有意向申请管理科学与工程专业博士研究生的同学,请重点关注经管学院官网上的招生夏令营通知。夏令营一般在4 ~ 5月份报名,春季学期末正式举办,通过笔试、面试综合考核来招录次年秋季入学的博士研究生。九月份研究生推免会有额外补录机会,但录取名额一般较少。博士研究生招生由系招生委员会统一进行考核决定,本人不单独进行招生。


更多